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ABSTRACT 

Photolysis of thiophene ylides such as dibenzothiophene ylide (DBTY) and 2,5-

dichlorothiophene ylide (DCTY) provides a route to certain carbenes with adjustable 

photophysical parameters, in that the absorption spectrum of the precursor and the initial spin 

population of the carbene can be varied.  However, the accumulated thiophene from extensive 

photolysis can act as a triplet sensitizer leading to the generation of relatively high proportion of 

triplet carbene.  It is demonstrated that dibenzothiophene has this property and 2,5-

dichlorothiophene does not. 

S-alkoxy dibenzothiophenium and N-alkoxy pyridinium salts are prepared and 

photolyzed to explore the potential homolytic and heterolytic paths of the photochemical S-O 

cleavage of the thiophenium salts. The heterolytic path would generate a highly unstable 

electron-deficient alkyl oxenium ion and the corresponding neutral leaving group. Homolysis 

would generate an alkoxy radical and the corresponding radical cation of the leaving group. The 

evidence obtained suggests the homolytic formation of alkoxy radical and radical cation of the 

leaving group though some fraction of the oxenium and the neutral leaving group cannot be ruled 

out completely. 
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CHAPTER 1.    GENERAL INTRODUCTION 

1.1   Dissertation organization 

This dissertation consists of four chapters. Chapter 1 is a general introduction of 

sulfonium ylides, sulfonium tetrafluoroborates, and pyridinium perchlorates, which includes the 

nomenclature and a general background on the photochemical pathways of each photochemical 

precursor based on the literature review.  

Chapter 2 is a paper published in the Journal of Photochemistry and Photobiology A: 

Chemistry in 2018 which compares the direct photolysis and dibenzothiophene sensitized 

photolysis of a dibenzothiophene sulfonium ylide (DBTY) and a 2,5-dichlorothiophene ylide 

(DCTY) to establish dibenzothiophene that is been accumulated during the photolysis or added 

to the reaction act as a sensitizer.1 

Chapter 3 discusses the photochemistry of S-alkoxy thiophenium tetrafluoroborates and 

N-alkoxy pyridinium perchlorates. This project is to investigate whether the sulfur bearing 

precursors are undergoing photo-heterolysis (generating alkoxy oxenium ion intermediate and a 

neutral leaving group either DBT or pyridine) or photo-homolysis (generating alkoxy radical and 

a radical cation of the leaving group DBT). Chapter 4 draws some general conclusions of the 

previous chapters.  

1.2   Nomenclature of Sulfur ylides 

Generally, in sulfur compounds, thia- or thio- is used to name the compounds where 

oxygen has been replaced by sulfur. For instance, if the oxygen in an ether, anisole or phenol has 

been replaced by sulfur, they will be called a thioether, thioanisole, and thiophenol instead of 

ether, anisole, and phenol, respectively. In case where the thiol group is a substituent, the prefix 

mercapto- is used. When oxygen in the furan is replaced by the sulfur, it is called as thiophene. 
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the numbering in thiophene starts at the heteroatom and continues around the ring. In the same 

manner, benzofuran and dibenzofuran is named as benzothiophene and dibenzothiophene. But, 

like thiophene, the numbering in the dibenzothiophene does not start at the heteroatom. It starts 

as it is shown below, where substituents on the sulfur are numbered 5 instead of 1.  

 

Figure 1. Structure of thiophene moieties. 

An ylide is a neutral compound containing adjacent formal charges, generally negative on 

carbon and positive on heteroatoms like sulfur, phosphorus, or nitrogen. The names of the 

sulfonium ylides in Chapter 2 will be represented by placing the groups bonded to the anionic 

carbon, followed by the thiophene moiety and finally S,C-ylide.  By convention, we also 

abbreviated dibenzothiophene as DBT, and then use that as a basis for other names. Thus DBTY 

is an ylide of DBT, but the specific formal name we use is dicarbomethoxy thiophene-S,C-ylide. 

The same pattern is used to name DCTY (Dicarbomethoxy-2,5-dichlorothiophene-S, C-ylide), 

where we are using DCT as an abbreviation for 2,5-dichlorothiophene.   

 

Figure 2. Structure of thiophene-S,C-ylides. 
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1.3   Photochemistry of thiophene-S,C-ylides 

Thiophene-S,C-ylides generate a carbene intermediate on photolysis.2-4  The carbene is a 

six electron carbon species and has remained an important and interesting reactive intermediates 

in organic chemistry for various reasons, like the access they provide to unusual products, their 

differing chemistry based on the spin multiplicity, and mechanistic complexity. The two other 

major photochemical precursors to the carbenes are diazo compounds and diazirines. But these 

precursors will undergo reactions in their excited states5 that is exactly like the reaction of the 

carbene. So, the thiophene-S,C-ylides shown below were prepared and studied as an alternative 

precursors. An additional benefit of this strategy is that the chromophore is in the photochemical 

leaving group, which does allow for tuning of absorption and initial spin multiplicity 

distribution. The reactivity of the carbene depends on its spin multiplicity. Free singlet and triplet 

carbenes are highly reactive intermediates that have complementary reactivities. In 

understanding the reactions of carbenes, it is best to consider singlet carbene as a zwitterion and 

triplet as a diradical.  

 

Figure 3. Structure of thiophene-S,C-ylides with varying thiophene moieties. 

1.4   Reaction of carbene with methanol 

Singlet carbenes react at or near the diffusion-controlled limit with nucleophiles like 

methanol, undergoing a net insertion into the O-H bond of the alcohol via the formation of ylide 

intermediate. It was reported that the rate of the reaction of the singlet carbene in neat methanol5 
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is 1010 s-1. The rate of intersystem crossing (ISC) from singlet to triplet carbene is not known. 

However, the observation of “singlet products” and “triplet products” depending on photolysis 

conditions shows that ISC in either direction is slow relative to the respective trapping rates. 

Triplet carbenes act as biradicals and undergo double hydrogen abstraction reactions in 

methanol. The rate of reaction of the triplet is likely to be 3 orders of magnitude slower than the 

singlet chemistry, based on other known rate constants.2 Photolysis of the ylides in methanol 

resulted in different ratios of OH insertion product (dimethyl methoxy-malonate) and double 

hydrogen abstraction product (dimethyl malonate).  

Another important aspect here regarding the singlet to triplet ratios is, most of the ylides 

have constant ratios with conversion, except the “parent” DBTY.  In DBTY photolysis, the 

product ratios were conversion dependent. It was also reported that the initial spin distribution 

generated on the photolysis of the ylide can be strongly influenced by manipulating the 

thiophene portion of the ylide (different modifications were tried in altering the thiophene moiety 

like introducing heavy atoms like bromide, iodide, substituting selenium instead of sulfur to 

induce heavy atom effect). In chapter 2, we show that this conversion dependence is a result of 

the accumulation of DBT in the reaction mixture, which we show to act as a triplet sensitizer. 

1.5   Reaction of carbene with alkene 

Singlet carbenes react with alkenes in a concerted and stereospecific manner to form 

cyclopropanes with the complete retention of stereochemistry. Direct photolysis of 

diazomalonate was reported to give cyclopropanes with 90% retention of stereochemistry with 

cis-4-methyl-2-pentene.6 The 10% loss of stereochemistry was due to the reaction between the 

excited diazo compound and the alkene at high concentration bypassing the carbene completely. 

No evidence has been obtained for the sulfonium ylides doing excited state chemistry other than 
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Scheme 1. Photolysis of thiophene-S,C-ylides in methanol and 10% Cis-4-ocetene. 

leading to carbene formation.4 Thermolysis of the ylides was performed in 10% cis-4-ocetene as 

a control for 100% singlet activity with the generation of cis-cyclopropane with good mass 

balance.  

Triplet carbene adds to olefins via stepwise radical addition to the double bond. A 

mixture of cis- and trans-products is generally observed because spin-flip of the intermediate 

biradical is slower than C-C bond rotation. So, the reaction of the carbene with cis alkene and the 

appearance of the trans cyclopropane is the evidence of the formation of triplet carbene.   
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1.6   Reaction of carbene with neat thiophene 

When DBTY was photolyzed in neat thiophene two products were observed.3 One results 

from direct reaction between the sulfur atom of the thiophene with the carbene, i.e., making the 

new thiophene ylide.  A second product is observed, in which a net insertion into the C-H bond 

at the 2-position of thiophene has occurred. Direct photolysis of DBTY using broad irradiation 

 

Scheme 2. Photolysis of DBTY in neat thiophene. 

centered at 350 nm in neat thiophene formed (2-thienyl) malonate in nearly quantitative yields. 

When the 2 and 5 positions of the thiophene were substituted with bromides, chlorides, iodides, 

etc., only the analogs of ylide were observed and the product (2-thienyl) malonate was not 

observed. When 2,5 positions of the thiophene are methyl groups, in addition to the ylide, the 

product of the benzyl insertion was observed.3 

1.7   Reaction of carbene with acetonitrile 

An oxazole product was identified as the third product in addition to the cis and trans 

cyclopropanes in the photolysis of DBTY in 10% cis-4-octene in acetonitrile. Based on the data 
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of the direct and sensitized photolysis, oxazole was assigned to the product of the singlet carbene 

and the acetonitrile solvent.7 The proposed mechanism of the formation of the oxazole from the 

singlet carbene is as shown below.  

 

Scheme 3. Mechanism of formation of oxazole from dicarbomethoxy carbene. 

1.8   Nomenclature of dibenzothiophenium salts 

When the sulfur atom of the thiophene or the sulfide is oxidized, the name of that 

oxidized sulfur compound depends on the number of oxygen atoms bonded to that sulfur atom. If 

the sulfur is bonded to one oxygen, it is called a sulfoxide and nomenclature uses that term or S-

oxide, depending on formality.  Thus, thiophene sulfoxide and thiophene-S-oxide are 

synonymous. It is called a sulfone if the sulfur is bonded to two oxygens, with nomenclature 

accepting, for example, thiophene sulfone or thiophene-S, S-dioxide. In chapter 2, we used 

dibenzothiophene-S-oxide (DBTO) as a nucleophile to alkylate the oxygen via an SN2 with an 

alkyl bromide or alkyl iodide.  This forms S-alkoxy dibenzothiophenium salts8 as shown below 

(1a, 1b).  
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Figure 4. Structure of S-Ethoxy dibenzothiophenium and S-Ethoxy dibromodibenzothiophenium 

salts. 

These compounds are salts, rather than ylides. Thus, we call 1a S-ethoxy 

dibenzothiophenium tetrafluoroborate and 1b is named as S-ethoxy-2,8-

dibromodibenzothiophenium tetrafluoroborate.  

1.9   Nomenclature of the pyridine precursors 

The naming of the pyridinium precursors follows the same convention. Common names 

are used to name the aromatic and heterocyclic amines such as pyridine, pyrimidine, and 2-

bromopyridine, and the accepted numbering schemes for those rings are observed. Like the 

thiophene derivatives, the pyridines can also be oxidized to its corresponding oxides.9-10 The 

oxidized pyridines get the positive charge on the nitrogen atom and the name of the oxidized 

pyridines ends with the suffix -N-oxide as in pyridine-N-oxide and 2-bromopyridine-N-oxide.  

Pyridine-N-oxides are nucleophilic enough to act as a nucleophile to react with the alkyl 

bromide or iodide to form N-alkoxy-pyridinium perchlorates as shown below.11 The salts were 

named starting with the alkoxy part attached to the nitrogen (as N-alkoxy), followed by the 

pyridinium perchlorate as in N-ethoxy pyridinium perchlorate (3a). 
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Figure 5. Structure of N-Alkoxy pyridinium perchlorate salts. 

1.10   Photochemistry of N-Alkoxy pyridinium salts 

Pyridinium salts such as N-alkoxy pyridinium and N-alkoxy quinolinium salts are 

reported to be capable of acting as photo-initiators for the cationic polymerization reaction of 

cyclic ethers such as cyclohexene oxide and vinyl ethers such as n-butyl vinyl ether.12-14 These 

salts are characterized by absorption maximums near 235, 270, and 300 nm. Some of the 

pyridinium, quinolinium, and isoquinolinium hexafluoro salts that are reported in the literature 

are shown below.13 These salts, on UV-irradiation, generate alkoxy radical and the 

corresponding radical cation of the leaving group (pyridine, 2-methylpyridine, and 

isoquinoline).13, 15 

On the other hand, All the thiophene sulfonium precursors that had been reported for the 

reactive intermediates (such as carbene, oxygen atom, nitrene)1-4, 16-19 undergo photo-heterolysis 

to generate the corresponding reactive intermediate and the neutral thiophene moiety as the 

leaving group. Sulfonium salts are reported to be one of the effective photo-initiators for the 

cationic polymerization reactions.20  To the best of our knowledge, there are no reports of S-

Alkoxy thiophenium salts being a photochemical precursors of alkoxy radical intermediate. 
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Figure 6. Structure of pyridinium and isoquinolium salts. 
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CHAPTER 2.    PRODUCT SENSITIZATION IN THE PHOTOCHEMICAL 

GENERATION OF CARBENES FROM SULFONIUM YLIDES 

Jagadeesh Kolattoor, Matthew Sherman, William Jenks* 

Department of Chemistry, Iowa State University, Ames, IA 50011 

E-mail address: wsjenks@iastate.edu 

 

Modified from a paper published in Journal of Photochemistry and photobiology A: Chemistry 

2018, 365, 208-212. 

2.1   Abstract 

Photolysis of thiophene ylides provides a route to certain carbenes with adjustable 

photophysical parameters, in that the absorption spectrum of the precursor and the initial spin 

population of the carbene can be varied.  However, the accumulated thiophene from extensive 

photolysis can act as a triplet sensitizer leading to triplet carbene.  It is demonstrated that 

dibenzothiophene has this property and 2,5-dichlorothiophene does not. 

2.2   Introduction 

S,C-Sulfonium ylides based on the thiophene moiety can be useful photochemical 

precursors of carbenes, as previously demonstrated for dicarbomethoxycarbene.1-3 The reaction 

finds a good analogy to the formation of nitrenes from sulfilimines4-8 and atomic O(3P) from 

sulfoxides.9-18 As illustrated in Scheme 1, photolysis of ylides analogous to the dibenzothiophene 

ylide DBTY regenerates the aromatic sulfide (in this case dibenzothiophene, DBT), along with 

the transient carbene C (quantum yield ~0.16 for DBTY).  Previous work demonstrated the 

important finding that the initial spin multiplicity distribution of the carbene depended on the 

exact nature of the thiophene derivative,1, 3 thus allowing manipulation of that parameter. This 

phenomenon was attributed to the variation of photo-physics contained within the thiophene 

mailto:wsjenks@iastate.edu
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chromophores, as contrasted to the fixed photo-physics available from diazo compounds, where 

the chromophore of the photochemical leaving group cannot be varied.  It is this latter feature of 

the thiophene ylides as a class (whether generating carbenes, nitrenes, or O(3P)) that can be 

exploited to make them attractive photochemical precursors for various reactive intermediates. 

 

Scheme 1. Photochemical formation of dicarbomethoxy carbene, C. 

 

Scheme 2. Reaction of dicarbomethoxy carbene with methanol. 
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Scheme 3. Reaction of dicarbomethoxy carbene with cis or trans alkenes. 

Proof of this concept can be developed through trapping reactions that occur rapidly 

compared to the intersystem crossing of the carbene.  Singlet dicarbomethoxy carbene (1C) in 

neat methanol is trapped as methoxymalonate MeOM, whereas the triplet carbene (3C) is 

indirectly observed as the reduced malonic ester M.  Adventitious or intentionally added oxygen 

diverts 3C to the oxomalonate OM (Scheme 2).  Similarly, the addition of 1C to alkenes to form 

cyclopropanes is stereospecific.  A mixture of cis and trans cyclopropanes that favors the more 

stable isomer is obtained from either the cis or trans oct-4-ene and 3C (Scheme 3). 

In our initial work,1 we stated that control photolysis showed constant product ratios 

(e.g., M: MeOM) with conversion, but as shown here, that is not true in every case.  This paper 

tests the hypothesis that the variation of such product ratios is due to triplet sensitization by the 

resulting sulfide product (e.g., DBT) in appropriate cases. 

2.3   Results and Discussion 

In the course of expanding work on this set of carbene precursors, a set of data was 

obtained for the direct photolysis of dibenzothiophene ylide (DBTY) at 270 nm in methanol 

showed that the product ratio obtained between methoxymalonate MeOM (the singlet-attributed 

product) and malonate M (the triplet-attributed product) was not constant with conversion 
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(Figure 1), in contrast to our prior generalization.  In fact, extrapolation to zero conversion 

suggested that the initial product distribution was roughly 15% triplet-derived and 85% singlet-

derived (hereafter noted as T:S = 15:85).  It should be noted that detection limits made 

determining the product ratios at very low conversion untenable, so these initial product ratios 

are extrapolated and should be treated as qualitative data.  (See supporting information for 

figures illustrating the same phenomenon in the remaining examples.) 

Over the course of bringing the reaction to full conversion in just over 200 minutes, that 

ratio reversed smoothly to 68:32 (Table 1, entry 1).  We use T:So to denote the extrapolated 

product ratio at zero conversion and T:Sf to denote the observed final product ratio.  As 

described below, similar time-course measurements were made for a series of related photolysis 

conditions.  For example, photolysis with 300 nm excitation provided very similar results.  See 

Table 1, entry 3. 

 

Figure 1. Product mixture for direct photolysis of DBTY at 270 nm as a function of photolysis 

time.  The singlet product is MeOM and the triplet products are M and OM.  Total yield at 

complete conversion is 72% for the three compounds, determined by comparison to formed 

DBT. 
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It was found that over the course of many septum piercings in some experiments, 

admission of adventitious oxygen meant that oxomalonate OM was formed in addition to M.  

Control experiments sampling only at the final time point showed that (M + OM) was 

approximately constant when only adventitious O2 was present.  Thus, both are counted as part 

of the triplet product mixture.   

In retrospect, it was hypothesized from data in Figure 1 that the great difference between 

T:So and T:Sf was due to competitive absorption of light by accumulating DBT, which could be 

acting as a triplet sensitizer.  According to literature data,19-20 the triplet yield of DBT at room 

temperature is nearly quantitative (T = 0.97).  Thus, as DBT begins to compete with DBTY for 

light absorption, a new triplet-only channel is opened.  This is because photons absorbed by 

DBT give rise to 3DBT, which can, in turn, form 3DBTY by energy transfer. 

Table 1. Photolysis of DBTY in methanol. 

Entry  [DBT]o, mMa ex, nm Gasb T:So T:Sf % Yieldc 

1 0 270 Ar 15:85 68:32 72 

2 7 (15%)c 270 Ar  75:25 78 

3 0 300 Ar 14:86d 71:29 61 

4 0 300 O2 0:100 47:53 55 

5 8 (79%)c 325 Ar 75:25 84:16 84 

aEstimate of the initial percentage of excitation light absorbed by DBT given in parentheses; 
bSolutions saturated with Ar to remove O2, except entry 3, which was saturated with O2;

  c 

Summed yield of M, MeOM, and OM. All yields are quoted at completion, summing all stated 

products, relative to DBT. 
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Photolysis of DBTY with added DBT was conducted with both 270 nm and 325 nm 

excitation.  DBT and DBTY have considerable overlap in their absorption spectra, but the 

relative absorption of DBT is maximized at the longer of these two wavelengths.  The initial 

fraction of light absorption by DBT under the conditions used was estimated at 15% at 270 nm 

and at 79% 325 nm (Table 1, entries 2 and 5).  The data clearly show that the fraction of triplet 

product is maximized at 325 nm, as would be predicted if DBT acts as a sensitizer. 

Another set of conditions involved intentionally adding molecular oxygen to the system, 

which is expected to have multiple effects (Scheme 4).  First, O2 should remove 3DBT by 

standard quenching pathways; the same should be true for 3DBTY, assuming the latter was 

sufficiently long-lived.  By removing precursors to 3C, the observed product mixture should 

show a higher fraction of singlet-derived products, and the observed rate of the reaction should 

slow (i.e., the apparent  will drop).  Indeed, the time to complete conversion was longer by 

~3.5 fold by switching from bubbling with Ar to bubbling with O2.  In the presence of O2, the 

T:So ratio for direct photolysis of DBTY does, in fact, extrapolate to approximately 0:100 (Table 

1, entry 4).  This strongly indicates that 3DBTY is a species with a reasonable (ns-µs) lifetime.  

(No products obviously due to 1O2 were observed, though it is likely that this reactive oxygen 

species is formed.  In the hands of this laboratory, 1O2 has not been observed to oxidize 

dibenzothiophene to its sulfoxide or sulfone analogs.)  The T:Sf is also more biased toward 

singlet products with O2 than in its absence. 

Photolysis of ylide DBTY was also carried out in a mixture of 10% (v/v) cis oct-4-ene in 

acetonitrile.  The expected cyclopropanes are accompanied by the formation of oxazole OZ, 

which clearly derives from the coordination of the acetonitrile nitrogen with 1C (Scheme 5).  We 

further assume that 1C produces the cis cyclopropane (cCP) stereospecifically, whereas the 
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triplet carbene produces a mixture of cis and trans cyclopropane, with the latter in predominance.  

Under these conditions, the expected carbene lifetime is only a few ns.21 

Direct photolysis of DBTY at 270 nm gave a product mixture at slight variance from our 

previous report,1 with an initial cis:trans ratio that extrapolated to approximately 50:50, but was 

only 13:87 (Table 2, entry 1) at full conversion.  The overall cyclopropane yield of 61% was 

accompanied by a 31% oxazole yield, making the overall mass balance quite good.  It is not clear 

what precise changes in conditions account for the variation in ratio from our previous report, but 

we do note that the accumulation of sensitizer product does mean that the initial concentration 

will have an effect on the final mixture.  The observed final product mixture should be sensitive 

to both excitation wavelength and initial concentration if the accumulated DBT byproduct acts as 

a sensitizer.  A roughly 9:1 retention: inversion of stereochemistry was reported by Platz and 

coworkers on direct irradiation of diazomalonate in the presence of a related cis-alkene, with a 

roughly reversed ratio on benzophenone-sensitized photolysis.21 

At the low conversion of DBTY on direct irradiation in acetonitrile, the major product is 

actually the oxazole OZ.  This is consistent with it being the major product of the singlet carbene 

under these conditions.  The time-course data confirm that oxazole formation slows dramatically 

(relative to the trans cyclopropane, in particular) in the latter third of the total conversion as the 

percentage of oxazole drifts down to its final value of 31%.  (See figure 5 in supporting 

information.)  This is in keeping with the notion that accumulating DBT competes for light 

absorption, and having done so, generates 3C by the triplet sensitization pathway.  The current 

data set does not reveal the precise apparent cis:trans ratio for the addition of the triplet carbene 

to cis-oct-4-ene under these conditions.  However, based on our previous and Platz’s results, it 

should be roughly 10:90.  Using this to estimate a “T:Sf” value as was done for photolysis in 
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methanol, the total triplet product must be in the range of 35%, in very reasonable agreement 

with the 32% estimate determined in methanol. 

 

Scheme 4. Presumed kinetic scheme for photolysis of DBTY in methanol in the presence of O2.  

Oxygen is presumed to non-productively quench both 3DBT and 3DBTY. 

 

Scheme 5. Photolysis of DBTY in the presence of acetonitrile and cis-oct-4-ene. 
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  In parallel, the methanol trapping data, photolysis of DBTY in octene/acetonitrile were 

also carried out in the presence of O2.  As expected, the percentage of singlet products increased 

and the reaction slowed considerably.  However, the total mass balance drops to only 51% 

(Table 2, entry 2) (from 92% in the absence of O2), so it is difficult to make quantitative 

arguments.  Nonetheless, all trends are consistent with the data reported in Table 1, i.e., that O2 

quenches the triplet state intermediates.  Experiments in octene/acetonitrile were also carried out 

with DBT added as a potential external sensitizer.  Mass balance is estimated at 80%, and the 

total oxazole yield drops dramatically to 6% (Table 2, entry 3).  

Table 2. Photolysis of DBTY in 10% Cis-4-octene in acetonitrile. 

 [DBT]o, 

mMa 
ex, 

nm 
Gasb CPf (%)c CP cis:transo CP cis:transf OZf (%) T:Sf 

  0 270 Ar 61 50:50d 13:87 31 66:34 

  0 270 O2 19  19:81 32 37:63 

  5 (96%) 323 Ar 74 21:79 14:86 6 91:9 

aEstimate of the initial percentage of excitation light absorbed by DBT given in parentheses; 
bSolutions saturated with Ar to remove O2, or saturated with O2;

  c Summed yield of tCP, cCP, 

and OZ. All yields are quoted at completion, summing all stated products, relative to DBT;  
dGreater uncertainty than comparable zero-conversion data. 

 

 In order to further confirm this explanation of curved yield plots, sets of analogous data 

were collected for the photolysis of ylide DCTY, derived from 2,5-dichlorothiophene (DCT).  

We believed it to be a very reasonable expectation that dichlorothiophene would be a poor triplet 

sensitizer, being unaware of any precedent for its use for that purpose or for it having a long     
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Table 3. Photolysis of DCTY in methanol 

 [DBT]o, mMa ex, nm Gasb T:So T:Sf 

Absolute yield 

(%)c 

    0 285 Ar 0:100 0:100 64 

3 (60%) 285 Ar 70:30 70:30 65 

3.5 (77%) 323 Ar 79:21 79:21 56 

aEstimate of the initial percentage of excitation light absorbed by DBT given in parentheses; 
bSolutions saturated with Ar to remove O;  c Summed yield of M, MeOM, and OM. All yields 

are quoted at completion, summing all stated products, relative to DCT. 

lived triplet state formed in high quantum yield (i.e., the ordinary conditions for being a good 

triplet sensitizer).  If DCT does not form a long lived triplet, then the accumulation of DCT 

should not change the relative fraction of products throughout the photolysis, even if it does 

eventually compete with DCTY for light absorption. 

As indicated in Table 3 (entry 1), photolysis of DCTY in methanol yielded no detectable 

triplet product (M), with MeOM formed in moderately good absolute yield.  Self-evidently, 

DCT is unable to act as a triplet sensitizer for DCTY.  However, a positive control is required, 

and thus photolysis of DCTY was repeated, using added DBT.  Again, the expected result was 

obtained:  a much higher contribution of triplet products (Table 3, entries 2 and 3), but at an 

essentially constant fraction throughout the course of the photolysis.  Although the mass balance  

is not great in any of these photolysis, it is at least fairly constant, whether the photolysis is direct 

or sensitized. 

 Similarly, photolysis of DCTY were carried out in the same 10% cis oct-4-ene in 

acetonitrile mixture as for DBTY.  Again, product proportions were invariant with the 
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Table 4. Photolysis of DCTY in 10% cis-oct-4-ene in acetonitrile: 

 [DBT]o, 

mMa 

ex, 

nm 

Gasb 

Absolute 

CP 

Yield (%)c 

Cyclopropane 

Cis:transf 

Absolute 

Oxazole yield 

(%) 

% 

Singlet 

  0 290 Ar 6 83:17 90 99 

  5 (90%) 323 Ar 62 16:84 28 31 

aEstimate of the initial percentage of excitation light absorbed by DBT given in parentheses; 
bSolutions saturated with Ar to remove O2;

  cAll yields are quoted at completion, summing all 

stated products, relative to DBT. 

conversion.  Direct photolysis (Table 4 entry 1) provided only a very small fraction of triplet 

products, but photolysis in the presence of additional DBT provided considerably more triplet 

derived product mixtures (Table 4 entry 2). 

2.4   Conclusion: 

Sulfonium ylides such as DBTY and DCTY remain viable and important potential 

carbene precursors, where variations in the photophysics of the sulfur-bearing moiety will result 

in a difference in the initial spin distribution of the reactive intermediate.  Additionally, the 

absorption window can be shifted.  However, it is now also clear that when the thiophene 

derivative byproduct is allowed to accumulate in the reaction mixture, there is the potential for 

that compound to act as a triplet sensitizer and thus affect the obtained product distributions.  In 

particular, it is demonstrated that DBT accumulation does effect triplet sensitization that affects 

reaction mixtures at an accumulation of a few mM, while DCT accumulation does not. 
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2.5   Experimental Section 

General synthesis of compounds 

The ylides DBTY and DCTY were prepared as described previously 1-3.  The cis-

cyclopropane cCP was isolated as a pure compound and the trans cyclopropane tCP was 

prepared as a mixture 22.  Commercially available oct-4-enes were distilled under Ar from CaH2 

to remove small quantities of oxidized impurities.  Solvents were the highest grade commercially 

available.  Methanol was used as received.  Acetonitrile was ≤30 ppm water commercially and 

handled to minimize air exposure. 

General method of photolysis 

Photolysis was carried out much as previously described. Briefly, solutions containing 

the ylide were prepared in initial concentrations of 5-8 mM in the solvent of interest.  Dodecane 

at 0.50 mM was used as an internal standard for GC analysis; a standard DB-5 (5% phenyl) 

microbore column was used for separation.  Unless otherwise noted, solutions in methanol had 

no other initial components; photolysis using cis-oct-4-ene as the trap was done with 10% alkene 

in acetonitrile (v/v) instead of methanol.  Solutions were deoxygenated or saturated with oxygen 

by bubbling for ca. 20 minutes with Ar or O2, respectively.  Sample volume was 3.0 mL in a 

standard 1 cm fluorescence cell equipped with a small stir bar and sealed with a septum for 

sparging and sampling through a needle. The light source was a 75 Xe lamp filtered through a 

monochromator set to ±12 nm dispersion.  Samples were mounted directly in front of the 

monochromator exit slit and magnetically stirred to ensure even irradiation.  GC retention times 

and relevant response factors were determined with authentic samples.  Samples for GC injection 

(e.g., for watching the time course of a reaction) were obtained by piercing the septum with a GC 

needle and withdrawal a couple of microliters.  
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General extrapolation of plots 

Extrapolations of product ratios to zero conversion were done by polynomial fits to 

appropriate fractions of the data sets.  No physically meaningful inferences were made from fit 

data, but it was assumed that the curves would extrapolate smoothly.  Thus, greater uncertainty 

should be attributed to product ratios at zero conversion than to those at full conversion, which 

were determined directly.  For the photolysis in cis-oct-4-ene/acetonitrile mixtures, estimation of 

the total percentage of products derived from singlet or triplet carbene requires knowledge of the 

cyclopropane mixture hypothetically generated by a sample of pure 3C.  Based on our previous 

work and a closely related reaction studied by Platz and coworkers,21 a 9:1 ratio of trans to cis 

was used for this study, and residual cis cyclopropane from observed ratios was attributed to 

singlet chemistry, as was observed oxazole. 
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Supplementary Data 

Photolysis traces                                                                                                               

                                                                                            

 

 

Figure S1. Direct photolysis of DBTY in methanol saturated with Ar at 270 nm. 
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Figure S2. Direct photolysis of DBTY in methanol saturated with Ar at 300 nm. 
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Figure S3. Direct photolysis of DBTY in methanol saturated with O2 at 300 nm. 
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Figure S4. DBT sensitized Photolysis of DBTY in Methanol saturated with Ar at 325 nm. 
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Figure S5. Direct photolysis of DBTY in 10% cis-4-octene saturated with Ar at 270 nm. 
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Figure S6. DBT sensitized Photolysis of DBTY in 10% Cis-oct-4-ene saturated with Ar at 323 

nm. 
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Figure S7. DBT sensitized Photolysis of DCTY in methanol saturated with Ar at 285 nm. 
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Figure S8.  DBT sensitized Photolysis of DCTY in 10% cis-oct-4-ene saturated with Ar at 323 

nm. 
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Quantitative UV-Vis Spectra 

 

 

 

Figure S9.  UV absorption spectra of DBT and DBTY in acetonitrile (top) and methanol 

(bottom). 
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Figure S10.  UV absorption spectra of DBT, DCT, and DCTY in acetonitrile (top) and methanol 

(bottom). 
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CHAPTER 3.    S-ALKOXY DIBENZOTHIOPHENIUM AND N-ALKOXY 

PYRIDINIUM SALTS:  HETEROLYTIC vs HOMOLYTIC PHOTOCHEMICAL 

FRAGMENTATION 

Jagadeesh Kolattoor, Zhiqian Huang, and William S. Jenks* 

Department of Chemistry, Iowa State University, Ames, IA 50011 

 

Modified from an article that is going to be published in Organic Letters 

3.1   Abstract 

S-alkoxy dibenzothiophenium and N-alkoxy pyridinium salts are prepared and 

photolyzed to explore the potential homolytic and heterolytic paths of the photochemical S-O 

cleavage of the thiophenium salts. The heterolytic path would generate a highly unstable 

electron-deficient alkyl oxenium ion and the corresponding neutral leaving group. Homolysis 

would generate an alkoxy radical and the corresponding radical cation of the leaving group. The 

evidence obtained suggests the homolytic formation of alkoxy radical and radical cation of the 

leaving group though some fraction of the oxenium and the neutral leaving group cannot be ruled 

out completely. 

 

Figure 1. Photolysis of dibenzothiophenium and pyridinium salts in acetonitrile-d3. 
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3.2   Introduction 

Oxenium ions are highly reactive intermediates that have two pairs of non-bonding 

electrons and a formal positive charge on the highly electronegative oxygen atom — and they are 

thought to be highly electrophilic.1-4  They are proposed as an intermediate in various synthetic 

transformations like electrochemical oxidation of phenols and phenolates for the generation of 

commercially useful polymers like poly 2,6-dimethyl-1,4-phenylene oxide5-9 and for super-acid 

catalyzed the oxidation of alkanes,10 Observational evidence for the existence of biphenyl 

oxenium ion as an intermediate came from transient absorption and kinetic studies of its 

formation and decomposition in aqueous solution by Novak and coworkers. 7, 11-18 They report a 

lifetime of 170 ns for p-biphenyloxenium in water.12 They used neutral precursors that undergo 

heterolysis to generate the ion pair but determined that photohomolysis is competitive, even in 

protic solvents. 

 

Figure 2. Structure of phenyloxenium ion and its respective precursors. 

Winter and co-workers used DFT studies to determine that simple aryloxenium ions like 

phenyloxenium ions have closed-shell singlet ground states, though certain substitutions (e.g., 

meta-amino) could put the triplet in the ground state.1  They reported the direct detection of 

closed-shell singlet phenyloxenium in three low-lying electronic states (closed-shell singlet, 

open-shell singlet, and triplet) ranging from the femtosecond to the microsecond time scale. 1-4  
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In recent years, it has been shown that dibenzothiophene (and related derivatives) serve 

as appropriate photochemical leaving groups for the formation of a variety of 6-electron 

intermediates, including oxygen atoms,19-21 carbenes,22-25, and nitrenes.26-27  We thus investigated 

whether sulfonium salts might analogously generate oxenium ions.  An advantage here, in 

principle, was that simple alkyl oxenium ions could be generated since the chromophore is in the 

leaving group.  This study was intended to lay the groundwork for a potentially more aggressive 

flash photolysis investigation that might be able to address such questions as to whether a singlet 

alkyl oxenium ion is even a thermodynamic minimum along the pathway that leads to a 

protonated aldehyde via hydride migration.  

 

Figure 3. Representation of dibenzothiophenium ylide being the precursor of O-atom, Carbene 

and Nitrene. 

At least potentially competing with the heterolytic photochemical cleavage to make the 

notoriously unstable oxenium ions, a homolytic S-O cleavage could occur, which would initially 

give rise to the sulfur-bearing radical cation and alkoxy radical, as shown in Scheme 1.  A 

precedent for this pathway has not been seen in our previous investigation of the organosulfur 

compounds, but it is widely believed that photolysis of N-alkoxy derivatives of pyridine, 

quinoline, isoquinoline, and phenanthridine are photochemically cleaved in the homolytic mode, 

generating alkoxy radicals and nitrogen-based radical cations.28-33 A quantum yield of 0.48 for 

N-ethoxy quinolinium photohomolysis has been reported.28  These compounds also rapidly and 
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efficiently produce alkoxy radicals on photochemical intramolecular electron transfer32 or 

intermolecular electron transfer.34-35 

 

Scheme 1. Heterolytic vs. homolytic photocleavage of S-alkoxy dibenzothiophenium salts 

 

Scheme 2. Potential paths of photolysis of dibenzothiophenium salts 

A second interest in the thiophene ylide precursors is that previous studies have shown 

that the use of different thiophene derivatives as a basis for the ylide leads to different initial 

mixes of singlet and triplet spin multiplicity carbenes22-25 and nitrenes.26-27 This was accessible – 

at least qualitatively – through simple product study because these intermediates react rapidly 

with solvent, i.e., more quickly than they get to spin equilibrium; thus, for example, 

dicarbomethoxy carbene provides a different mix of dimethyl malonate (triplet product) and 

dimethyl methoxymalonate (singlet product) when produced by photolysis of various thiophene 

ylide derivatives in methanol.22-23 We postulated that a similar differentiation might be made 
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from oxenium ions, expecting aldehydes and alcohols for singlet and triplet species, respectively.  

Complicating this, of course, was the possibility that similar products might be observed from 

the homolytic pathway. 

In this paper, we report the observation that indeed alcohols and aldehydes are observed 

on photolysis of S-alkoxy thiophenium derived cations.  However, through modifications of the 

thiophenes with bromine as a heavy atom substituent, comparison to N-alkoxypyridinium 

precursors, and control experiments involving trapping by molecular oxygen, we show that the 

predominant pathway for the S-alkoxy thiophenium salts appears to be homolytic, rather than 

heterolytic. 

3.3   Results and discussion 

3.3.1   Compound selection and preparation 

S-Alkoxy dibenzothiophenium tetrafluoroborate salts were prepared with a simple ethoxy 

group and a 3-phenylpropoxy group intended to make GC and/or NMR analysis of certain 

products easier.  Each was prepared with and without bromine substitution on the 

dibenzothiophene (DBT) nucleus, the motivation being to provide at least a modest heavy atom 

effect on the formation of the reactive intermediates; that is, to potentially increase the initial 

yield of reactive intermediates born with triplet spin multiplicity.  These were prepared by the 

method of Acheson36 which consists of nucleophilic substitution on an alkyl iodide or bromide 

by the corresponding sulfoxide in the presence of Ag+ ions.  Analogous secondary and tertiary 

alkoxy compounds could not be isolated, in agreement with previous reports of the instability of 

such materials.37-38 

It was anticipated that if compounds 1 and 2 were to generate oxenium ions by 

heterolysis with singlet multiplicity, they would nearly instantaneously rearrange to protonated 
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Figure 4. Dibenzothiophenium and pyridinium salts reported in this project. 

aldehydes.  (These are of course observed as the ordinary deprotonated aldehyde.) Although the 

triplet reactivity was not quite as clear to anticipate, it was thought that a very electrophilic 

oxygen centered “radical cation” would probably abstract a hydrogen atom initially and products 

would derive from there.  (Scheme 2). We had recently reported the chemistry of series of 

dicarbomethoxy carbene precursors clearly demonstrated that manipulation of the thiophene 

portion of a series of sulfonium ylides could be used to change the initial spin state distribution 

of carbene generated on photolysis of the ylide from over 90% singlet to almost entirely triplet.22-

23  The potential for analogous differentiation seemed plausible in this case.   
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Scheme 3. Potential primary reactivities for singlet and triplet alkyl oxenium ions 

In contrast, photochemical homolysis of 1 or 2 would produce an alkoxy radical and 

DBT•+.  In-cage reaction of a singlet radical pair would also produce photoacid and aldehyde, 

presumably through transient formation of a protonated DBT.  A triplet radical pair is subject to 

diffusive escape and it is presumed that the alkoxy radical would largely abstract hydrogen from 

the solvent, forming the observable alcohol.  Depending on conditions, disproportionation might 

also lead to some aldehyde formation.  Thus, it was clear that multiple experiments would be 

required to distinguish among the variables of spin multiplicity and heterolytic vs homolytic 

cleavages.   

As an example of a known and analogous homolytic photolysis, the brief study of the 

alkoxy pyridines described herein was completed.  Katritzky and Lunt reported the synthesis of 

t-butoxy pyridinium perchlorate, and their method was used to prepare the pyridinium 

perchlorates of primary, secondary, and tertiary derivatives.39  
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3.3.2   Results of photolysis product study 

Direct photolysis of S-ethoxy dibenzothiophenium salt 1a at 350 nm in deuterated 

acetonitrile generates a 2:1 mixture of ethanol and acetaldehyde, as shown in Table 1.  The 

overall yield of these two compounds, as determined by careful NMR integration relative to an 

internal standard, was 33% (relative to disappearance of 1a) and was accompanied by a 

corresponding amount of DBT.  In addition to ethanol and acetaldehyde, a third product was 

identified by a sharp NMR singlet at 5.45 ppm. This was confirmed to be ethylene with an 

authentic sample.  Based on the integration, a yield of ethylene was approximately 15% was 

observed; we recognize that this does not include any ethylene that evolved into the gas phase.  

Numerous small peaks in the aromatic region indicated that several aromatic compounds were 

also observed, but these could not be identified.  (No sulfoxide was observed in this or any case 

reported in Table 1.  Additionally, the yields of DBT or its brominated derivative corresponded 

well to the observed quantity of alcohol and aldehyde.)  Control experiments showed that the 

yield curves were relatively linear with conversion and that acetaldehyde would not be converted 

photochemically to ethanol under these conditions.  A quantum yield for the formation of both 

alcohol and aldehyde of 0.12 was determined, which could be converted to 0.36 for the 

photochemical loss of the starting material 1a. 

The formation of an alkene product was not observed in any other photolysis and the 

pathway that leads to it remains unclear.  It is tempting to suggest that a homolytic 

photochemical C-O cleavage occurs, but we have no evidence for this; no build-up of the 

corresponding sulfoxide was observed.  Moreover, that would not explain why it is not observed 

on the photolysis of 2a (see below). 
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Table 1. Photolysis of S-alkoxy dibenzothiophenium derivatives 

 

 

Compound R1 R2 , nm Sensa Total 

yieldb 

R1OH: RCHO c 

1a H H 350  33%d 67:33 0.12 ±0.03 

1a H H 285 DBT 75% 82:19  

1b H Br 254  64% 83:17 0.34 ± 0.06 

1b H Br 350  36% 29:71  

2a PhCH2 H 300  67% 88:12  

2a PhCH2 H 264 PMA 86% 89:11  

2b PhCH2 Br 254  66% 78:22  

a PMA = p-methoxyacetophenone; DBT = dibenzothiophene. b Yield based on the sum of ROH 

and RCHO.  The yield of DBT was always consistent with these values. c Quantum yield of the 

appearance of [ROH + RCHO].  Quantum yield of the disappearance of starting material is thus 

0.36 and 0.53, respectively.  d Additionally, ethylene was observed.  See the main text. 

We recently reported the photochemistry of series of dicarbomethoxy carbene precursors 

clearly demonstrating that manipulation of the thiophene portion of a series of sulfonium ylides 

could be used to change the initial spin state distribution of the carbene population generated on 

photolysis of the ylide from over 90% singlet to almost entirely triplet.23  However, we later 

determined that DBT, which accumulates under photolysis conditions, can act as a triplet 

sensitizer.22 Thus photolysis of 1a was carried out with DBT intentionally added to the solution 

and the excitation adjusted such that at least 90% of the light was absorbed by the sensitizer.  

Two significant changes were noted that indicate that the same phenomenon is observed here.  
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First, the total yield of the alcohol and aldehyde rose significantly to 75%, and no ethylene 

formation was observed.  Second, there was a modest increase in the ratio of alcohol to aldehyde 

from approximately 2:1 to 4:1.  The most straightforward interpretation here is that the formation 

of the ethylene (by whatever mechanism) does not pass through the lowest reactive triplet of 1a 

and that indeed the formation of ethanol is indicative of triplet cleavage. 

In part to look for a more easily observed and quantified alkene (i.e., allylbenzene), 

photolysis of a phenylpropyl derivative 2a was carried out.  No allylbenzene (or ethylene) was 

observed and an increase in the overall yield of alcohol and aldehyde was noted.  A slight 

increase in the alcohol: aldehyde ratio, relative to direct photolysis of 1a, was observed.  

Sensitization with p-methoxyacetophenone rather than DBT was chosen for practical reasons, 

but the effect was not dramatic as for 1a, as reported in Table 1.  

The sensitized photolysis results supported the hypothesis that the alcohol product 

derives from a triplet reactive intermediate, whether alkoxyl radical or oxenium ion.  Introducing 

bromine to the arene of photochemical precursor has been observed in others of our works to 

induce triplet processes to varying degrees.20, 23, 40-41   Thus compounds 1b and 2b were also 

prepared and photolyzed.  The observed yield of alcohol and aldehyde was low for 350 nm 

photolysis of 1b (again, without observation of ethylene).   

In the photolysis of dibenzothiophene sulfoxide, a distinct wavelength dependence is 

known.42  Thus, for this compound whose 350 nm photolysis did not fit the previous pattern, the 

254 nm photolysis was also examined.  A similar observation was made here, where the short 

wavelength irradiation produced both a higher overall yield and a higher relative percentage of 

alcohol.  The quantum yield for product formation and loss of starting material are 0.34 and 0.56, 

respectively.  Results for 2b photolyzed at 254 nm were essentially identical to those for 1b.   
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The data in Table 1 are consistent with a modest heavy atom effect. These results are 

reasonably consistent with the simplest possible hypothesis that any singlet cleavage gives rise to 

the aldehyde and triplet cleavage gives rise to the alcohol.  However, a better fit may come from 

the additional allowance that alkoxy radicals may disproportionate under these conditions, which 

produces a baseline amount of the aldehyde (probably 15-20%, relative to the alcohol), present 

regardless of whether any singlet cleavage is taking place.  

Photolysis of 1a in CD3CD2OD supports this hypothesis.  In this case, only ethanol was 

observed by NMR.  No acetaldehyde nor its diethyl acetal was detected.  It stands to reason that, 

as ethanol is a better hydrogen atom donating solvent than acetonitrile, the nascent ethoxy 

radicals are resolved into ethanol before disproportionating with one another.  (The deuterated 

nature of the solvent ethanol naturally means we are blind to the resulting radical products of the 

deuterated radicals.) 

In order to explore this further, we wished to explore photolysis sulfonium ylides based 

on secondary or tertiary alcohols.  However, as noted previously, we found that such S-alkoxy 

dibenzothiophenium salts could not be isolated and those efforts were frustrated.37-38 

As a backup position, the photolysis of a few N-alkoxy pyridinium perchlorates (3a, 3b, 

4, 5) was explored.  These compounds are widely viewed as producing alkoxy radicals and 

pyridinium radical cations on direct photolysis.28-30, 32-33, 39 Experiments analogous to those 

described above were carried out with these compounds and are reported in Table 2.  Since acid 

is generated, the resulting insoluble pyridinium salts were not quantified. 

In this instance, inserting a Br into compound 3a to give 3b resulted in the only instance 

we report here in which aldehyde was not observed.  (Other than that photolysis of 3a did not 
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result in the formation of ethylene), the observed ~4:1 ratio of alcohol to aldehyde and middling 

yields were in qualitative agreement with those of the sulfur compounds.  Switching the alkyl 

group to isopropyl gave our second instance of more ketone (acetone) than alcohol (isopropyl 

Table 2. Photolysis of N-alkoxy pyridinium perchlorates 

 

 

Compound R3 R4 , nm Total 

yielda 

R1OH: C=O   c 

3a CH3CH2 H 254 35% 78:22 0.15 ±0.03 

3b CH3CH2 Br 254 56% 100:0 0.18 ± 0.04 

4 (CH3)2CH H 254 35% 25:75 0.16 ± 0.16 

5 (CH3)3C H 254 70% 24:76 0.090 ± 0.007 

a Yield based on the sum of ROH and RCHO. b Note that the carbonyl compound is acetaldehyde 

for 3, and acetone for 4 and 5. c Quantum yield of the appearance of [ROH + C=O].  Quantum 

yield of the disappearance of starting material is thus 0.43, 0.32, 0.46, and 0.13, respectively. 

alcohol), without otherwise dramatically changing the observed parameters.  With the alkyl 

group set as t-butyl, acetone is also observed.31  However, this is almost certainly due to 

secondary fragmentation of a t-BuO• radical (and clearly not disproportionation).  While not 

dispository, the similar results between these compounds and the sulfur analogs certainly are 

suggestive that a similar mechanism is in play, i.e., S-O and N-O homolysis. 

3.3.3   Additional results supporting homolytic cleavage.    

In a recent publication, Winter and coworkers reported the direct observation of a triplet 

aryloxenium ion by epr at near liquid-He temperatures.3  (The use of literally the same 
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instrumentation that had previously successfully detected a triplet oxenium was a fortuitous 

control for sensitivity.)  Photolysis of 1a in a variety of solvents did not result in the observation 

of any high spin compounds at 10 K.  However, large spin-1/2 signals were observed.  While this 

is the lack of evidence for the oxenium, rather than specific evidence against the oxenium, it is 

consistent with the homolytic pathway for 1a.   

Finally, the photolysis of 1a and 2a was also carried out in O2-saturated acetonitrile.  

Numerous analogous control photolysis with DBT (or its sulfoxide, sulfilimines, and sulfonium 

ylides upon which we have previously reported) show no oxidation of the DBT nucleus when 

oxygen is present.  That is, in all these cases, DBT is the end point of the sulfur bearing 

component, regardless of the presence or absence of molecular oxygen.  However, Che and 

coworkers have previously shown that DBT is oxidized by O2 when its radical cation is formed 

(in their case by photoinduced electron transfer to N-methyl quinolinium).43  In O2-saturated 

acetonitrile, photolysis of 1a and 2a resulted in sulfide:sulfoxide:sulfone ratios of 59:31:10 and 

43:46:11, respectively.  We do not ascribe any significance to the relatively minor difference in 

observed ratios here, but rather interpret this to mean that DBT•+ is clearly present in the reaction 

pathway. 

3.4   Conclusion 

This report represents the first instance we have reported in which S-functionalized 

derivatives of dibenzothiophene undergo photo-homolysis rather than photo-heterolysis.  In this 

fashion, S-alkoxy dibenzothiophenium salts behave more like traditional sulfonium salts than 

they do like the sulfoxides and sulfilimines.  Evidence is strongly in favor of radical-and-DBT•+ 

formation, though some fraction of oxenium-and-DBT cannot be ruled out.  Similarly, the 

simplest hypothesis to account for the formation of aldehydes in these reactions is that there are 

two sources: (a) geminate reaction of an alkoxy radical and DBT•+ presumably of singlet 
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multiplicity; and (b) disproportionation of freely diffusing alkoxy radicals which are presumably 

largely from triplet homolysis. 

3.5   Experimental section 

Compounds.   

All new compounds were characterized by 1H and 13C NMR and by HRMS (ESI).  

Spectra are given in supporting material. 

General method of synthesis of S-Alkoxy dibenzothiophenium tetrafluoroborates (1a, 2a). 

To a solution of dibenzothiophene-S-oxide (2.0 mmol) in about 20 mL of dichloromethane in a 

100 mL round bottomed flask, the corresponding alkyl iodide or alkyl bromide (1.1 equiv) and 

AgBF4 (1.1 equiv) were added and the mixture was stirred overnight. The next day, the 

precipitate of silver halide was filtered off, and diethyl ether was added to the remaining solution 

to precipitate the product. The precipitated product was collected by filtration and rinsing. No 

further purification was needed.  Yields were in the range of 40-60%.36 

S-Ethoxy dibenzothiophenium tetrafluoroborate (1a). Yield:  60%. 1H NMR (400 MHz, 

CD3CN): δ 8.30 (d, J = 7.9 Hz, 2H), 8.17 (d, J = 7.7 Hz, 2H), 7.99 (t, J = 8.2 Hz, 1H), 7.78 (t, J 

= 8.3 Hz, 1H), 3.84 (q, J = 7.0 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H).  13C NMR (400 MHz, CD3CN): 

δ 140.64, 137.61, 131.88, 130.59, 129.16, 124.33, 70.40, 14.29. HR-MS (ESI): Calculated mass: 

229.0682, Found: 229.0682.    

S-(3-Phenylpropyl) dibenzothiophenium tetrafluoroborate (2a), Yield:  64%. 1H NMR (400 

MHz, CD3CN): δ 8.30 (d, J = 0.6 Hz, 2H), 8.14 (d, J = 0.6 Hz, 2H), 7.98 (td, J = 7.7, 1.1 Hz, 

2H), 7.77 (td, J = 7.7, 1.1 Hz, 2H), 7.25 (t, J = 7.8 Hz, 2H), 7.18 (t, J = 6.7 Hz, 1H), 7.08 (d, J = 

7.2 Hz, 2H), 3.66 (t, J = 6.1 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.94 – 1.83 (m, 2H). 13C NMR 
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(400 MHz, CD3CN): δ 140.72, 140.23, 137.64, 131.88, 130.67, 128.80, 128.49, 128.32, 126.21, 

124.31, 72.10, 30.56, 30.10.  HR-MS (ESI): Calculated mass: 319.1151, Found: 319.1158.  

General method of synthesis of S-Alkoxy 2,8-dibromodibenzothiophenium 

tetrafluoroborate (1b, 2b).  

To a solution of 3,7-dibromodibenzothiophene-S-oxide (2 mmol) in about 20 mL of 1,2-

dichloroethane in a 100 mL round bottomed flask, 1-bromo-3-phenylpropane (2.5 equiv) and 

AgBF4 (2.5 equiv) were added and the mixture was stirred overnight. The next day, the 

precipitated silver halide was filtered off, and diethyl ether was added to the remaining solution 

to precipitate the product. The precipitated product was collected by filtration and rinsing.  This 

compound contained a small percentage ≤ 4% of the corresponding sulfoxide.  

S-Ethoxy 2,8-dibromodibenzothiophenium tetrafluoroborate (1b). Yield: 38%. 1H NMR 

(400 MHz, CD3CN): δ 8.40 (d, J = 1.5 Hz, 2H), 8.20 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 8.5 Hz, 

1H), 3.84 (q, J = 7.0 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H).  13C NMR (400 MHz, CD3CN): δ 141.22, 

135.32, 132.58, 131.81, 128.64, 128.21, 71.21, 14.28. HR-MS (ESI): HR-MS (ESI): Calculated 

mass: 384.8892, Found: 386.8879 (Mass of the middle peak of the dibromo triplet) 

S-(3-Phenylpropyl) 2,8-dibromodibenzothiophenium tetrafluoroborate (2b). Yield: 35%. 1H 

NMR (400 MHz, CD3CN): δ 8.35 (d, J = 1.8 Hz, 2H), 8.17 (d, J = 8.5 Hz, 2H), 7.95 (dd, J = 8.4, 

1.9 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.08 (d, J = 6.7 Hz, 2H), 3.68 (t, J = 

6.2 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.94 – 1.85 (m, 2H). 13C NMR (400 MHz, CD3CN): δ 

141.27, 140.10, 135.32, 132.61, 131.83, 128.50, 128.39, 128.28, 128.17, 126.23, 72.83, 30.42, 

30.01. HR-MS (ESI): HR-MS (ESI): Calculated mass: 474.9374, Found: 476.9356 (Mass of the 

middle peak of the dibromo triplet) 
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General method for N-alkoxy pyridinium perchlorate derivatives.   

The method of Katritzy and Lunt was used to prepare these compounds.39  The N-t-

butoxy pyridinium perchlorate was a known compound whose spectra were confirmed.  The 

others were characterized by NMR and HRMS (ESI) 

N-Ethoxy pyridinium perchlorate (3a). Yield: 10%.  1H NMR (400 MHz, CD3CN): δ 8.96 (d, 

J = 5.9 Hz, 2H), 8.60 – 8.52 (m, 1H), 8.18 – 8.11 (m, 2H), 4.68 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 

7.0 Hz, 3H).  13C NMR (400 MHz, CD3CN): δ 145.44, 141.48, 129.66, 80.26, 12.40. HR-MS 

(ESI): Calculated mass: 124.0757, Found: 124.0753.    

N-Ethoxy 2-bromopyridinium perchlorate (3b). Yield: 10%.  1H NMR (400 MHz, CD3CN): δ 

9.09 (d, J = 6.6 Hz, 1H), 8.37 (d, J = 4.8 Hz, 2H), 8.13 – 8.05 (m, 1H), 4.67 (q, J = 7.0 Hz, 2H), 

1.54 (t, J = 7.0 Hz, 3H).  13C NMR (400 MHz, CD3CN): δ 145.79, 144.23, 136.26, 134.96, 

128.51, 80.24, 12.34.  HR-MS (ESI): Calculated mass: 201.9862, Found: 201.9862.    

N-isopropoxy pyridinium perchlorate (4). Yield: 20%.  1H NMR (400 MHz, CD3CN): δ 8.90 

(d, J = 6.7 Hz, 2H), 8.61 – 8.54 (m, 1H), 8.14 (t, J = 7.2 Hz, 2H), 5.06 – 4.85 (m, 1H), 1.42 (d, J 

= 6.8 Hz, 4H).  13C NMR (400 MHz, CD3CN): δ 145.51, 142.10, 129.60, 88.08, 19.34.  HR-MS 

(ESI): Calculated mass: 138.0913, Found: 138.0912.    

General method of photolysis 

A known amount of S-alkoxy dibenzothiophenium tetrafluoroborate or N-alkoxy 

pyridinium perchlorate was dissolved in 1 mL of CD3CN. Initial concentrations were typically 

20-40 mM.  The solution was transferred to an NMR tube and closed with a rubber septum. 

Then, the solution was gently sparged with Ar gas for about 20 minutes. The deoxygenated 
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solution was photolyzed using a Rayonet lamp (Southern New England Ultraviolet, RMR-600, 

modified with a fan at the bottom) fitted with the UV bulbs of the appropriate wavelength (254 

nm or the broad sources centered at 300 or 360 nm). The reaction was photolyzed to 100% 

conversion and monitored with 1H-NMR using a suitable internal solvent.  Reported yields are 

from at least triplicate runs. When a sensitizer was used, dibenzothiophene (DBT) or p-

methoxyacetophenone (PMA) was added to the solution, otherwise using the same protocol.  The 

concentration of sensitizer was adjusted so that ≥ 90% of the light was absorbed by the sensitizer 

at the wavelength of irradiation.  

Quantum yield Measurements 

Quantum yields were measured relative to the photolysis of azoxybenzene as a chemical 

actinometer.44 Azoxybenzene was photolyzed in a solution of ethanol and potassium hydroxide 

monitoring the appearance of 2-hydroxyazobenzene at 458 nm. The quantum yields of the 

appearance of the products of the photolysis of S-alkoxy dibenzothiophenium tetrafluoroborate 

and N-alkoxy pyridinium perchlorate were measured by photolysis using a 75 W Xenon arc lamp 

with a monochromator set at 254 nm (ca. 20 nm bandpass) for all precursors except S-ethoxy 

dibenzothiophenium tetrafluoroborate, which was done at 350 nm. Reported errors are standard 

deviations from at least triplicate runs. The reaction progress was monitored by 1H-NMR.  

EPR experiments 

1-2 mM solution of S-alkoxy dibenzothiophenium tetrafluoroborate or N-alkoxy 

pyridinium perchlorates was made in 1 mL of the solvent (Ethanol, dichloromethane, 1,1,2,2-

tetrachloroethane) and transferred to an EPR tube. The tube is then frozen in liquid N2 to make a 

glass matrix. Then the tube is into the sample probe (cooled to 77 K or 10 K) of the Bruker 

Elexsys E580 X-band FT-EPR spectrometer equipped with a UV accessory (Hg vapor lamp) and 



www.manaraa.com

 54 

a light pipe through which the sample is irradiated. The sample is irradiated for about half an 

hour and the EPR spectrum is acquired. 
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NMR spectra of previously unreported compounds and quantitative UV Spectra are 

provided in the supplementary data.   
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Supplementary data 

NMR spectra of the synthesized compounds                                                                             

                                                                                                      

 

Figure S1. 1H-NMR S-Ethoxy dibenzothiophenium tetrafluoroborate (1a). 
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Figure S2. 13C-NMR S-Ethoxy dibenzothiophenium tetrafluoroborate (1a). 

 

 

 

 

 

 

  



www.manaraa.com

 57 

 

 

Figure S3. 1H-NMR S-(3-Phenylpropyl) dibenzothiophenium tetrafluoroborate (2a).  
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Figure S4. 13C-NMR S-(3-Phenylpropyl) dibenzothiophenium tetrafluoroborate (2a).  
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Figure S5. 1H-NMR S-Ethoxy 2,8-dibromodibenzothiophenium tetrafluoroborate (1b).  
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Figure S6. 13C-NMR S-Ethoxy 2,8-dibromodibenzothiophenium tetrafluoroborate (1b).  
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Figure S7. 1H-NMR S-(3-Phenylpropyl) 2,8-dibromodibenzothiophenium tetrafluoroborate (2b).  
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Figure S8. 13C-NMR S-(3-Phenylpropyl) 2,8-dibromodibenzothiophenium tetrafluoroborate (2b).  
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Figure S9. 1H-NMR N-Ethoxy pyridinium perchlorate (3a). 
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Figure S10. 13C-NMR N-Ethoxy pyridinium perchlorate (3a). 
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Figure S11. 1H-NMR N-Ethoxy 2-bromopyridinium perchlorate (3b). 
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Figure S12. 13C-NMR N-Ethoxy 2-bromopyridinium perchlorate (3b). 
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Figure S13. 1H-NMR N-isopropoxy pyridinium tetrafluoroborate (4). 
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Figure S14. 13C-NMR N-isopropoxy pyridinium tetrafluoroborate (4). 
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Quantitative UV-Vis Spectra 
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Figure S15. UV absorption spectra of S-Ethoxy dibenzothiophenium tetrafluoroborate (1a) and 

DBT. 
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Figure S16. UV absorption spectra of S-(3-Phenylpropyl) dibenzothiophenium tetrafluoroborate 

(2a) and p-Methoxyacetophenone (PMA). 
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Figure S17. UV absorption spectra of S-Ethoxy 2,8-dibromodibenzothiophenium 

tetrafluoroborate (1b). 
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Figure S17. UV absorption spectra of N-t-butoxy pyridinium perchlorate (5) and p-

Methoxyacetophenone (PMA). 
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CHAPTER 4.    GENERAL CONCLUSIONS 

S,C-Ylides such as DBTY, DCTY, TY, BTY are found to be reliable photochemical 

precursors of dicarbomethoxy carbene. These precursors have the carbanion flanked in between 

two electron-withdrawing groups which delocalize the negative charge and thereby make them 

very stable and easy to handle in the laboratory. The nature of the product formed from the 

carbene depends on the spin multiplicity of the carbene and the trap used in the photolysis.  

 

Figure 1. Structure of thiophene-S,C-ylides. 

The photolysis of the DBTY and DCTY in methanol generates three products: two main 

products and one additional product. Singlet carbene inserts into the -OH bond of the methanol 

forming methoxy malonate as a singlet product, triplet carbene undergoes double hydrogen 

abstraction and forms dimethyl malonate as a triplet product. The third additional product is 

observed only in the event where oxygen is introduced (intentionally or by accident) into the 

reaction. The triplet carbene reacts with molecular oxygen to eventually produce dimethyl 

oxomalonate. 

The photolysis of the DBTY and DCTY in 10% cis-4-ocetene in acetonitrile also 

generates three products: cis-cyclopropane, trans-cyclopropane, and oxazole. Singlet carbene 

reacts with cis-4-ocetene reacts in a concerted fashion with full retention of stereochemistry to 

form exclusively Cis-cyclopropane. Oxazole is also identified to be the product formed between 
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singlet carbene and the acetonitrile solvent. Triplet carbene reaction with cis-4-octene in a 

stepwise manner to form a mixture of cis and trans-cyclopropanes. 

It was reported in our previous papers that the rate of the trapping of the initial spin 

population is fast compared to the ISC. Varying ratios of singlet and triplet products constant 

with the conversion was reported for the S,C-ylides with the exception of DBTY. The yields of 

the photolysis of DBTY is conversion dependent because the accumulation of DBT during the 

photolysis acts as a triplet sensitizer and influences the ratio of singlet and triplet products. The 

direct photolysis and the DBT sensitized photolysis of DBTY and DCTY in methanol and 10% 

cis-4-ocetene in acetonitrile in argon and oxygen saturation environments were reported in 

Chapter 2 and the phenomenon of DBT being a triplet sensitizer is well established.  

S-alkoxy dibenzothiophenium tetrafluoroborates were made as potential photochemical 

precursors to the highly reactive alkoxy oxenium ion intermediates in parallel to the thiophene 

based precursors of carbenes and nitrenes we reported earlier. Photo-heterolysis is routine in 

these former cases but was not observed for the dibenzothiophenium salts.  Instead, photo-

homolysis to produce the alkoxy radical and sulfur radical cation was observed.  This is in 

parallel to the known photochemistry of N-alkoxypyridinium compounds more than to that of 

sulfoxide, sufilimines, and sulfonium ylides. 

Singlet radical ion pair of the alkoxy radical and the leaving groups radical cation can 

undergo in-cage disproportionation, to form aldehyde and a protonated sulfur-bearing leaving 

group, i.e., protonated DBT, which subsequently would equilibrate with solvent. In the case of 

the triplet radical ion pair, radicals are expected to diffuse apart from each other in large part.  An 

alkoxy radical generally abstracts hydrogen from the solvent to form alcohol. However, random 
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encounters between alkoxy radicals can result in disproportionation to form alcohol and 

aldehyde. 

Direct photolysis and the sensitized photolysis of the salts were performed. Photolysis of 

the S-Ethoxy dibenzothiophenium tetrafluoroborate (1a) in ethanol-d6 (a better hydrogen atom 

donor than the usually used acetonitrile) exclusively formed alcohol which implies the formation 

of the alkoxy radical. DBT radical cation was trapped as dibenzothiophene-S-oxide and the 

dibenzothiophene-S,S-dioxide by performing the photolysis of S-Ethoxy dibenzothiophenium 

tetrafluoroborate (1a) and S-(3-Phenylpropyl) dibenzothiophenium tetrafluoroborate (2a) in 

acetonitrile-d3 saturated with oxygen. The data collected from the direct and sensitized 

photolysis strongly suggest that the precursors are undergoing photo-homolysis generating 

alkoxy radical and the corresponding radical cation of the leaving group.  
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